

Shri Vile Parle Kelavani Mandal's

Dwarkadas J. Sanghvi College of Engineering

(Autonomous College Affiliated to the University of Mumbai)

Scheme and detailed syllabus of DJ19 Honors Program in Immersive Technologies

Revision: 1 (2023) With effect from the Academic Year: 2023-2024

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Proposed scheme for Honors in

Immersive Technologies

(Academic Year 2023-2024)

Sr.	Course Code Cour se	Cour	Teaching Scheme (hrs.)			Continuous Assessment (A) (marks)			Semester End Assessment (B) (marks)					(A+B)	Total	
51.			Th	Р	Т	Credits	Th	T/W	Total CA (A)	Th / Cb	0	Р	0 & P	Total SEA (B)	(A+D)	Credits
	Sem V		1				1									
1	DJ19AMLHN1C1	Computer Graphics	4			4	25		25	75				75	100	4
	· · · · · · · · · · · · · · · · · · ·	Sem VI														
2	DJ19AMLHN1C2	Augmented Reality and Virtual Reality	4			4	25		25	75				75	100	4
	DJ19AMLHN1L1	Augmented Reality and Virtual Reality Laboratory		2		1		25	25		25		Ð	25	50	1
	Sem VII												121			
3	DJ19AMLHN1C3	Game Design and Gamification	4			4	25		25	75				75	100	4
4	DJ19AMLHN1L2	Game Design and Gamification Laboratory		2		1		25	2 <mark>5</mark>		25			25	50	1
	Sem VIII															
5	DJ19AMLHN1C4	Metaverse	4			4	25	-	25	75				75	100	4
		Total	16	4	0	18	100	50	150	300	50	0	0	350	500	18

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Program: Artificial Intelligence and Machine Learning

Semester : V

Course: Computer Graphics

Course Code: DJ19AMLHN1C1

Prerequisite: Basic Mathematics, C Programming, Java

Course Objectives: The course intends to introduce the students to fundamental knowledge and basic technical competence in the field of computer graphics. The course will introduce the basic concepts of Computer graphics. The course will also acquaint the student with algorithms for generating and rendering graphical models, mathematics for geometrical transformations. The course will also enable students to apply various techniques of projections, shading, illumination and lighting to graphical models.

Course outcomes: On successful completion of this course, learner will be able to:

- 1. Implement various algorithms to generate lines, circles, curves, fractals, polygons and color them.
- 2. Apply 2D and 3D Transformations, viewing and projections on a given object.
- 3. Understand the concept of color models, lighting, shading and hidden surface elimination.
- 4. Design an animation sequence.

Detail	Detailed Syllabus: (unit wise)					
Unit	Description	Duration				
1	 Introduction to Computer graphics and Output Primitives: Graphics primitives- pixel, resolution, aspect ratio, frame buffer, refresh rates, Display Devices, Bitmap and Vector based graphics, Overview of Coordinate system. Scan Conversion of - point, line using Digital differential analyser & Bresenham's algorithm, circle using midpoint approach and Bresenham. Polygons: Concave, Convex, Inside/Outside Test Area Filling: Scan line Polygon Fill Algorithm, Boundary Fill and Flood Fill algorithm 	11				
2	 Two Dimensional Transformations: Basic Geometrical 2D transformations- Translation, Rotation, Scaling, Reflection, Shear, their homogeneous Matrix representation, and Composite transformation. Three Dimensional Transformations: Translation, Rotation, Scaling, Rotation about an arbitrary axis 	10				
3	Viewing Transformations and Projections: Introduction, Viewing Pipeline, View Coordinate reference frame, Window to Viewport Transformation, Point Clipping, Line clipping: Cohen Sutherland Algorithm, Liang Barsky Algorithms, Polygon Clipping: Sutherland Hodgeman Polygon Clipping and Weiler Atherton, Text Clipping. Three Dimensional Viewing Pipeline, Viewing Transformation, Projections: Parallel (Oblique and Orthographic), Perspective (one Point, two point and three point)	10				

4	Light, Color, Shading and Hidden Surfaces: Properties of Light, Color Models - CIE	08						
	chromaticity diagram, RGB, HSV, CMY							
	Illumination Models: Ambient Light, Diffuse reflection, specular reflection, Phong Model,							
	combined diffuse and specular reflections with multiple light sources, Warn Model							
	Shading Algorithms: Introduction to Rendering, Halftone, Gouraud and Phong Shading							
	Hidden Surfaces: Introduction, Back face detection and removal, Algorithms: z buffer, Painter's							
	algorithm, Area Subdivision (Warnock)							
5	Curves: Introduction to curves, interpolation and approximation, Blending Function, Bezier and	08						
	B-spline curves							
	Fractals: Introduction, Classification, Fractal Generation- Snowflake, Sierpinski Gasket, Koch							
	Curve, Cantor Middle-Thirds Set, Hilbert Curve, Applications of Fractals.							
6	Introduction to Animation: Key Frame Animation, Animation Sequence, Motion Control	05						
	Methods, Morphing, Warping (only Mesh Warping).							
	TOTAL	52						

Books Recommended:

Text books:

- 1. Donald Hearn and M. Pauline Baker, "Computer Graphics C Version", 2nd Edition, Pearson Education
- James D. Foley, Andries van Dam, Steven K Feiner, John F. Hughes, "Computer Graphics Principles and Practice in C", 2nd Edition, Pearson Publication
- 3. Rajesh K. Maurya, "Computer Graphics", Wiley India Publication.

Reference Books:

- 1. Donald Hearn and M. Pauline Baker, "Computer Graphics with Open GL", 4th Edition, Pearson Education
- 2. Steven Harrington, "Computer Graphics", McGraw Hill.
- 3. Rogers, "Procedural Elements of Computer Graphics", Tata McGraw Hill.
- 4. F.S. Hill, Stephen M. Kelley, "Computer Graphics using Open GL" Prentice Hall
- 5. Samit Bhattacharya, "Computer Graphics", Oxford Publication

Shri Vile Parle Kelavani Mandal's DWARKADAS J. SANGHVI COLLEGE OF ENGINEERING

(Autonomous College Affiliated to the University of Mumbai) NAAC Accredited with "A" Grade (CGPA : 3.18)

Continuous Assessment (A):

Course	Assessment Tools	Marks	Time (hrs.)	
	One Term test (based on 40 % syllabus)	25 each	1	
Theory	Second Term test (next 40 % syllabus) / presentation / assignment / course project / group discussion / any other.	(Avg.25)	as applicable	
Audit course	Performance in the assignments / quiz / power point presentation / poster presentation / group project / any other tool.	5.1		
Laboratory			1	
Tutorial]	
Laboratory &Tutorial	Performance in the laboratory and tutorial.	25		

The final certification and acceptance of term work will be subject to satisfactory performance upon fulfilling minimum passing criteria in the term work / completion of audit course.

Semester End Assessment (B):

Course	Assessment Tools	Marks	Time (hrs.)
Theory /	Written paper based on the entire syllabus.	75	2
* Computer based	* Computer based assessment in the college premises.	75	3
Oral	Questions based on the entire syllabus.	25	as applicable
Practical	tical Performance of the practical assigned during the examination and the output / results obtained.		2
Oral & Practical	Project based courses - Performance of the practical assigned during the examination and the output / results obtained. Based on the practical performed during the examination and on the entire syllabus.		2